

CRISIS MANAGEMENT ON SPACE SECURITY

Daniel K. Inouye Asia-Pacific Center For Security Studies

OUR TEAM (G.2)

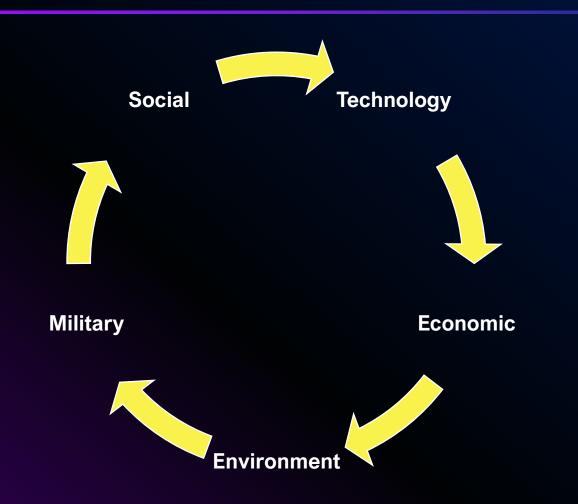
Radm. Paisan Wongmek

Col. Saman Junsian

Gp.Capt. Pisuthiphong srichooros

Gp.Capt Jaruwat Juntong

Ms. Angsumalin Chatsuwanwaree


Dr. Nirawat Thammajak

Mr. Anuk Pitukthanin

2

Social

Positive

 Increased national pride and interest in STEM (Science, Technology, Engineering, and Mathematics) among the youth, driven by achievements in space exploration and satellite technology.

Negative

Potential social divide if access to space technology and its benefits are not equitably distributed across different socioeconomic groups.

Technology

Positive

 Rapid advancement in space technology, geospatial data capabilities, and innovation through international collaborations and knowledge exchange programs.

Negative

 Dependency on foreign technology and expertise might limit domestic innovation if not carefully managed.

Economic

Positive

Boost to the economy through the development of a space industry, including satellite manufacturing, launch services, and space tourism. Enhanced capabilities in agriculture, disaster management, and urban planning through improved geospatial data.

Negative

- High costs associated with space programs could strain national budgets if not balanced with other economic priorities.
- Economic system disrupt due to dependency on foreign space technology

Environment

Positive

 Improved environmental monitoring and management through satellite data, aiding in conservation efforts, pollution tracking, and climate change mitigation.

Negative

Risks associated with space debris and the environmental impact of satellite launches need careful consideration and mitigation strategies.

Politic

Positive

 Enhanced diplomatic ties and international cooperation through space partnerships, particularly with countries like France, which has collaborated on projects like THEOS-2.

Negative

Geopolitical tensions could arise if space activities are perceived as aligning too closely with any one major power bloc, impacting Thailand's neutrality.

Military

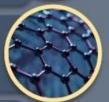
Positive

 Strengthened national security through improved surveillance and reconnaissance capabilities.
Development of dual-use technologies that can benefit both civilian and military sectors.

Negative

- Potential arms race in space technology and militarization of space could lead to regional instability and increased defense spending.
- Anti-satellite (Communication, Navigation, Aviation)

Policy **Outward Outward** Recommendation Exploration/Deep Space Power Bloc/Race Safety Research and Development Pavloads Strategy **Prototypes** Balance policy Publication **Share and Cooperation Patents Neutrality Diplomacy CIVILIAN DEFENSE** Academic/Research Surveillance Sensing/Timing Control/Command **Business** Institutional Development **Utility/Communication** Startup-IDEs Upgrade Concerning Unit Supplies/Market /Navigation Function/Task Local content Division of labor **Geoinformatics Monitoring Space Safety** Consult Inform +Atmosphere +Coastal areas +Forest +Farmland +Space weather +Space debris +Asteroids Observation Invest Infrastructure/ Utilization Security Technology Hot spot/Forest Public awareness Fire Collaboration/alliance Inward Inward Flood Areas


TCD1 EEE Components, Photonics, MEMS

- อุปกรณ์อิเล็กพรอนิกส์
- เขมิคอนดักเตอร์
- อุปกรณ์ Commercial-of-the-shelf (COTS)

TCD2 Structures, Mechanisms, Materials, Thermal

• โครงสร้าง, วัสดุ, การทนอุณหภูมิ, กลไก

TCD3 Avionic systems

- ระบบควบคุมการบิน / ระบบประมวลผลข้อมูลภายใน (On-board Computers and Data Handling Systems, OBCDHS),
- ระบบควบคุมการรับส่งสัญญาณ (Telemetry, Tracking, and Control, TT&C)

TCD4 Electric Architecture, Power & Energy

ระบบเก็บและจ่ายพลังงาน

TCD5 RF & Optical Systems and Products

- ระบบสัญญาณวิทยุ
- ระบบสัญญาณแสง
- Remote sensing
- Image Enhancement

TCD6 Life Support, Robotics & Automation

- การดำรงชีวิตในอวกาศ (การดำรงชีพในอวกาศ เช่น การปลูกพืช ระบบอาหาร)
- ระบบหุ่นยนต์, ระบบการทำงานอัตโนมัติ

TCD7 Space logistic and launcher

- ลงจอต/ เพิ่มศักยภาพการขนส่ง
- เทคนิคการขนส่งระหว่าง orbit
- จรวด ระบบจรวด

TCD8 Ground systems & Mission Operations

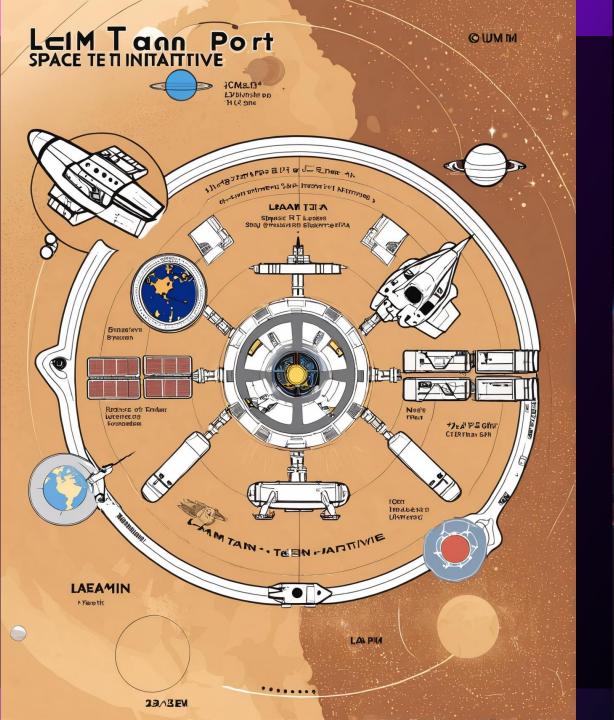
- ระบบควบคุมสื่อสารภาคพื้นดิน
- ชุดคำสั่งของการ calibrate ตาวเทียม เช่น การปรับกล้องหลังปล่อย ตาวเทียม (data preprocessing and orbit commissioning)

TCD9 Digital & Information Applications

- เทคโนโลยีข้อมูลดิจิทัล/ Big data analytics
- Artificial intelligence/ Virtual and augmented reality
- Advanced Simulators, Autonomy, Cybersecurity
- Data Post-Processing, Data Analytics, Geoinformatics

TCD10 Guidance, Navigation and Control (GNC) system

- การเคลื่อนตัวในอวกาศและพลังงานขับเคลื่อน
- ระบบควบคุมทิศทางการทีนและหาตำแหน่งของตามที่ยม (Attitude and Orbit Control System, AOCS)


TCD11 Space Debris & Space Environment

- การเฝ้าระวังภัยจากอวกาศ/ ขยะอวกาศ
- ความปลอดภัยในอวกาศ/ สภาพอวกาศ
- ตาวเคราะห์น้อย

TCD12 Science payloads and experiment

- อุปกรณ์ตรวจวัดทางวิทยาศาสตร์
- การทดลองในอวกาศ และบนโลกที่เกี่ยวข้อง

กำหนดการประชุมรับฟังความเห็น

การขับเคลื่อนการใช้ประโยชน์ จากแผนที่นำทาง การวิจัยขั้นแนวหน้า ระบบโลกและอวกาศ

Earth Space System Frontier Research Roadmap

วันพุธที่ 28 สิงหาคม 2567 เวลา 8.30 – 12.00 น. ณ ห้องพญาไท ชั้น 6 โรงแรมอิสติน แกรนด์ พญาไท

	และช่องทางออนไลน์ผ่าน Zoom meeting / FB Live สกสว.
08.30 - 09.00 u.	ลงทะเบียน และชมผลงานจัดแสดงจากภาคีเครื่อข่ายด้านระบบโลกและอวกาศ
09.00 - 09.05 u.	กล่าวต้อนรับ โดย ผู้ดำเนินรายการ
09.05 - 09.15 u.	กล่าวชี้แจงวัตถุประสงค์ในการคำเนินการจัดทำแผนที่นำทางการวิจัยขั้นแนวหน้าระบบโลกและอวกาศ โดย รศ.คร.ปัทมาวดี โพชนุกูล ผู้อำนวยการ สกสว.
09.15 - 09.30 u.	กล่าวเปิดงาน และปาฐกถาพิเศษเรื่อง "ความสำคัญของแผนที่นำทางการจิจัยขั้นแนวหน้า ระบบโลกและอวกาศ กับการขับเคลื่อนระบบวิทยาศาสตร์ วิจัยและนวัตกรรมของประเทศ" โดย นางสาว ศุกมาส อิศรกักดี รัฐบนตรีว่าการกระทรวงการจุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม (๑ว.)
09.30 - 10.15 u.	นำเสนอผลการวิเคราะห์แผนที่นำทางการวิจัยขั้นแนวหน้าระบบโลกและอวกาศ และแนวทากรใช้ประโยชน์

10.15 - 10.45 u. พักรับประทานอาหารว่าง

การเสวนา "งิบเคลื่อนการใช้ประโยชน์จากแผนที่นำทางการวิจัยงั้นแนวหน้าระบบโลกและอวกาศ" 10.45 - 11.40 u. โดย ดร.สิทธิพร ชาญนำสิน

รศ.คร.ณัฐพร ฉัตรแกม

คร.กนอม ปลื้มวงศ์โรจน์

ดำเนินรายการโดย ดร.ธันยวัต สมใจทวีพร

11.40 - 12.00 u.

แนวทางของ สกสว. ในการใช้แผนที่นำทางฯ เพื่อขับเคลื่อนการวิจัยขั้นแนวหน้าระบบโลกและอวกาศ

โดย คร.ณิรวัฒน์ ธรรมจักร์ รองผู้อำนวยการ สกสว.

คร. วิธินทร์ สนธิ์เศรษฐี

OUR ADVERTORIAL

